232 research outputs found

    Alien species in Italian freshwater ecosystems: a macroecological assessment of invasion drivers

    Full text link

    Does divergence from normal patterns of integration increase as chromosomal fusions increase in number? A test on a house mouse hybrid zone

    Get PDF
    Chromosomal evolution is widely considered an important driver of speciation because it can promote the establishment of reproductive barriers. Karyotypic reorganization is also expected to affect the mean phenotype, as well as its development and patterns of phenotypic integration, through processes such as variation in genetic linkage between QTL regions or between regulatory regions and their targets. Here we explore the relationship between chromosomal evolution and phenotypic integration by analysing a well-known house mouse parapatric contact zone between a highly derived Robertsonian race (2n = 22) and populations with standard karyotype (2n = 40). Populations with hybrid karyotypes are scattered throughout the hybrid zone connecting the two parental races. Using mandible shape data and geometric morphometrics, we test the hypothesis that patterns of integration progressively diverge from the “normal” integration pattern observed in the standard race as they accumulate Robertsonian fusions. We find that the main pattern of integration observed between the posterior and anterior part of the mandible can be largely attributed to allometry. We find no support for a gradual increase in divergence from normal patterns of integration as fusions accumulate. Surprisingly, however, we find that the derived Robertsonian race (2n = 22) has a distinct allometric trajectory compared to the standard race. Our results suggest that either individual fusions disproportionately affect patterns of integration or that there are mechanisms which “purge” extreme variants in hybrids (e.g., reduced fitness of hybrid shape).publishe

    Morphology and chromosomes of Tatera Lataste 1882 (Rodentia Muridae Gerbillinae) in West Africa

    Get PDF
    In a sample of the genus Tatera Lataste 1882 from West Africa (Benin and Burkina Faso), we analyzed the cranial and dental morphology and the karyotype (G, R, C and NOR banding). The cranial morphology confirms the attribution of this sample to Tatera kempi Wroughton 1906. An analysis of the dental morphology was also performed but it seems not to offer diagnostic traits. The karyotype described in the present work for T. kempi is comparable with that described for T. hopkinsoni Thomas 1911, supporting the synonymy of these two taxa. In contrast, the karyological results clearly discriminate kempi from both guineae and nigrita, the latter currently considered a synonym. In the karyotype of T. kempi, we found a polymorphism of a small chromosome, which occurs in the three situations: metacentric/metacentric, metacentric/acrocentric and acrocentric/ acrocentric. A similar polymorphism was described for hopkinsoni. The banding shows that the variation of the morphology of the X chromosome in Tatera is related to a pericentric inversion. KEY WORDS: Tatera, rodents, chromosomes, taxonomy, West Africa, evolution

    Evolutionary and demographic correlates of Pleistocene coastline changes in the Sicilian wall lizard Podarcis wagleriana

    Get PDF
    Aim Emergence of coastal lowlands during Pleistocene ice ages might have provided conditions for glacial expansions (demographic and spatial), rather than contraction, of coastal populations of temperate species. Here, we tested these predictions in the insular endemic Sicilian wall lizard Podarcis wagleriana. Location Sicily and neighbouring islands. Methods We sampled 179 individuals from 45 localities across the whole range of P. wagleriana. We investigated demographic and spatial variations through time using Bayesian coalescent models (Bayesian phylogeographic reconstruction, Extended Bayesian Skyline plots, Isolation‐with‐migration models) based on multilocus DNA sequence data. We used species distribution modelling to reconstruct present and past habitat suitability. Results We found two main lineages distributed in the east and west portions of the current species range and a third lineage restricted to a small area in the north of Sicily. Multiple lines of evidence from palaeogeographic (shorelines), palaeoclimatic (species distribution models), and multilocus genetic data (demographic and spatial Bayesian reconstructions) indicate that these lineages originated in distinct refugia, located in the north‐western and south‐eastern coastal lowlands, during Middle Pleistocene interglacial phases, and came into secondary contact following demographic and spatial expansions during the last glacial phase. Main conclusions This scenario of interglacial contraction and glacial expansion is in sharp contrast with patterns commonly observed in temperate species on the continent but parallels recent findings on other Mediterranean island endemics. Such a reverse expansion–contraction (EC) dynamic has been likely associated with glacial increases of climatically suitable coastal lowlands, suggesting this might be a general pattern in Mediterranean island species and also in other coastal regions strongly affected by glacial marine regressions during glacial episodes. This study provides explicit predictions and some methodological recommendations for testing the reverse EC model in other region and taxa

    The intriguing biogeographic pattern of the Italian wall lizard Podarcis siculus (Squamata: Lacertidae) in the Tuscan Archipelago reveals the existence of a new ancient insular clade

    Get PDF
    The Tuscan Archipelago is one of the most ancient and ecologically heterogeneous island systems in the Mediterranean. The biodiversity of these islands was strongly shaped by the Pliocene and Pleistocene sea regressions and transgression, resulting in different waves of colonization and isolation of species coming from the mainland. The Italian wall lizard, Podarcis siculus, is present on the following islands of the Tuscan Archipelago: Elba, Giglio, Giannutri, Capraia, Montecristo and Cerboli. The species in the area displays a relatively high morphological variability that in the past led to the description of several subspecies. In this study, both the genetic and morphological diversity of P. siculus of the Tuscan Archipelago were investigated. Specifically, the meristic characters and the dorsal pattern were analyzed, while the genetic relationships among these populations were explored with mtDNA and microsatellite nuclear markers to reconstruct the colonization history of the Archipelago. Our results converge in the identification of at least two different waves of colonization in the Archipelago: Elba, and the populations of Cerboli and Montecristo probably originate from historical introductions from mainland Tuscany, while those of Giglio and Capraia are surviving populations of an ancient lineage which colonized the Tuscan Archipelago during the Pliocene and which shares a common ancestry with the P. siculus populations of south-eastern Italy. Giannutri perhaps represents an interesting case of hybridization between the populations from mainland Tuscany and the Giglio-Capraia clade. Based on the high phenotypic and molecular distinctiveness of this ancient clade, these populations should be treated as distinct units deserving conservation and management efforts as well as further investigation to assess their taxonomic status

    Chromosomal and molecular characterization of Aethomys

    Get PDF
    Aethomys is a common and widespread rodent genus in the African savannas and grasslands. However, its systematics and taxonomy are still unclear as no study has covered the entire range. In fact it might not be a monophyletic genus and perhaps should be split into two subgenera, Micaelamys and Aethomys. In this paper, we present findings based on the cytogenetics and the entire cytochrome b sequence of two species from Zambia (A. kaiseri) and Tanzania (A. chrysophilus), and we compare them with the sequences of a South African species (A. namaquensis) and other allied muroid genera. Comparison of the banded chromosomes revealed complete G-band homology between the autosomes of the two species. However, the X and Y chromosomes clearly differ in size and in C- and G-banding, being much larger in A. kaiseri. Comparison of the cytochrome b sequences places the separation between A. kaiseri and A. chrysophilus at 4.49 Mya, a period of intense speciation in other African muroids. The resulting phylogeny strongly supports the idea of a paraphyletic group, suggesting the need to elevate the previously described subgenera to the genus rank

    Consequences of the experimental removal of Sabella spallanzanii (Gmelin, 1791) from the fouling assemblage of a Mediterranean harbour

    Get PDF
    Filter feeding invertebrates are a relevant component of fouling assemblages with a pivotal role in ecological processes, since they improve water quality, enhance habitat heterogeneity and transfer organic matter from the water column to the benthos. They modulate the availability of resources to other species, with effects on the density and behavior of the surrounding macrofauna. The fanworm Sabella spallanzanii, one of the largest and most abundant Mediterranean filter feeders, provides a shelter for predation and a secondary substrate for algae and settlement for sessile invertebrates. We tested its role in driving the structure of fouling assemblages, through a removal experiment.The experiment was one-year-long, with four sampling times. The effect of the removal on the fouling community was marginal in terms of species richness and evenness, while the biomass showed important differences, with a constant increase over time with higher values in the samples containing S. spallanzanii. At the end of observations, the biomass reached the value of 3917 g DW m-2 in controls and 2073 g DW m-2 in treatments. The empty space left by fanworms was not used by other species with similar biomasses. It is possible that the functioning of fouling communities may, in the event of loss of species, fluctuate in terms of biomass mobilization to different compartments, either towards the pelagic compartment or to the detritus chain. In systems with reduced water turnover, this by-pass can have important consequences in terms of stability and ecological balance

    Is There a Significant Excess in Bottom Hadroproduction at the Tevatron?

    Full text link
    We discuss the excess in the hadroproduction of B mesons at the Tevatron. We show that an accurate use of up-to-date information on the B fragmentation function reduces the observed excess to an acceptable level. Possible implications for experimental results reporting bottom quark cross sections, also showing an excess with respect to next-to-leading order theoretical predictions, are discussed.Comment: 5 pages, Latex, 4 figures. Submitted to Phys. Rev. Let

    On the origin and diversification of Podolian cattle breeds: testing scenarios of European colonization using genome-wide SNP data

    Get PDF
    During the Neolithic expansion, cattle accompanied humans and spread from their domestication centres to colonize the ancient world. In addition, European cattle occasionally intermingled with both indicine cattle and local aurochs resulting in an exclusive pattern of genetic diversity. Among the most ancient European cattle are breeds that belong to the so-called Podolian trunk, the history of which is still not well established. Here, we used genome-wide single nucleotide polymorphism (SNP) data on 806 individuals belonging to 36 breeds to reconstruct the origin and diversification of Podolian cattle and to provide a reliable scenario of the European colonization, through an approximate Bayesian computation random forest (ABC-RF) approach
    corecore